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Abstract

The mixed finite element formulation for elliptic problems is characterized by
simultaneous calculations of the potential (primal variable) and of the flux field
(dual variable). This work focuses on new H(div)-conforming finite element
spaces, which are suitable for flux approximations, based on curved meshes of a
planar region or a manifold domain embedded in R3. The adopted methodology
for the construction ofH(div) bases consists in using hierarchicalH1-conforming
scalar bases multiplied by vector fields that are properly constructed on the
master element and mapped to the geometrical elements by the Piola transfor-
mation, followed by a normalization procedure. They are classified as being of
edge or internal type. The normal component of an edge function coincides on
the corresponding edge with the associated scalar shape function, and vanishes
over the other edges, and the normal components of an internal shape function
vanishes on all element edges. These properties are fundamental for the global
assembly ofH(div)-conforming functions locally defined by these vectorial shape
functions. For applications to the mixed formulation, the configuration of the
approximation spaces is such that the divergence of the dual space and the pri-
mal approximation space coincide. Verification numerical results are presented
for curved triangular and quadrilateral partitions on circular, cylindrical and
spherical regions, demonstrating stable convergence with optimal convergence
rates, coinciding for primal and dual variables.
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1. Introduction

The mixed method [2] is a classical formulation for flow simulations, which
is based on simultaneous calculations of the potential (primal variable) and of
the flux field (dual variable). The appropriate finite element approximation
spaces for the flux field are of H(div) type, formed by vectorial functions, not
necessarily continuous, but with continuous normal components at the inter-
faces of the elements. Discontinuous finite element spaces are used for potential
approximations. These properties are crucial to ensure local mass conservation,
a fundamental requirement in this type of application.

Many conservation laws can be defined on manifolds, such as thermal flow
simulation over shells (e.g. satelites) and simulations of the atmosfere where
the computational domain is a sphere. Other areas can be simulations of elec-
trical currents over conductive surfaces. In most of these problems the local
conservation of the quantity of interest is crucial.

The main objective of this work is to build hierarchical high order shape func-
tions for finite element subspaces of H(div) type based on partitions Γ = {K}
of the computational domain Ω, where K is a curved triangular or quadrilateral
element. The domain Ω may be a region contained in the Euclidean space R2

or a manifold immersed in R3.
Since the pioneering work by Raviart and Thomas [10] in 1977, different

constructions of H(div) (or H(curl)) approximation space have been proposed
in the literature. In some contexts the vector basis functions are constructed on
the master element and then they are transformed to the elements of the par-
tition by Piola transformations, as described in [2, 11, 1]. Recent constructions
of hierarchical high order spaces, as described in [9, 4, 14], are based on the
properties of the De Rham complex, and require the computations of gradients
of scalar functions in H1–conforming spaces. Piola transformation for affine
mappings of regions Ω ⊂ R2 or Ω ⊂ R3 have been used in [11] to map tradi-
tional RTk−1 and BDMk bases, for k = 1, 2, defined in triangular or tetrahedral
master elements. In [12], the method is used for two-dimensional elements over
a manifold of R3, with affine mappings and bases RTk−1, BDMk and BDFMk.

The methodology proposed in the present paper for the construction of
H(div) bases consists in using hierarchical H1-conforming scalar bases mul-
tiplied by vector fields that are properly constructed on the master element
and mapped to the geometrical elements by the Piola transformation, followed
by a normalization procedure. For triangular and quadrilateral elements with
straight sides, similar methodology has been successfully applied in [13], but
there the vector fields are constructed directly on the geometric elements, with-
out using Piola transformations.

This methodology for the construction of H(div)-conforming functions is de-
signed having in mind the resources provided by NeoPZ1, where the required hi-
erarchical high order continuous scalar basis functions are already implemented

1http://github.com/labmec/neopz
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for conformal or non-conformal hp-meshes [5, 3]. NeoPZ is a general finite
element approximation library organized by modules for broad classes of tech-
nologies, incorporating a variety of element geometries, variational formulations,
and approximation spaces (e.g. continuous, discontinuous, H(div)-conforming,
and others). It allows the user to apply hp-strategies by choosing locally the
mesh refinement and the order of approximation. NeoPZ is integrated with
pthreads and thread building blocks for efficient execution on multi core com-
puters. Multiphysics simulations can also be implemented by combining differ-
ent approximation spaces into a coupled system of equations [6], a procedure
that facilitates the implementations of mixed formulations based on different
approximations spaces for dual and primal variables.

The paper is organized as follows. Section 2 summarizes the main steps in
the construction of the vectorial shape functions of H(div) type. The next three
sections are dedicated to give the details of these steps. The main properties of
the required hierarchical scalar bases and of the family of constant vector fields
in the master elements are presented in Section 3. In Section 4, the geometric
mappings and the associated transformations of scalar functions from the mas-
ter element to the geometric elements are described, as well as the procedure
for the construction of H1-conforming approximation spaces. The main part of
this paper is Section 5, where a detailed construction of the vectorial H(div)
shape functions at element level over partitions by curved elements is described,
and their global assembly over the domain, guaranteeing the continuity of nor-
mal components across element interfaces. The results of the applications of
these bases for the representation of flux fields on discrete formulations of the
mixed method are discussed in Section 6 for three test problems defined on
circular, cylindrical and spherical computational domains. Section 7 gives the
final conclusions of the article.

2. Script

For each two-dimensional curved geometric element K, flat when K ⊂ R2

or on a manifold immersed in R3, the construction of bases BK
k for subspaces

of Hdiv(K) follows a common script, considering the following aspects:

1. A master element K̂ ⊂ R2 (triangular or quadrilateral), and a geometric
mapping x : K̂ → K, associating each point ξ in the master element to a
point p = x(ξ) in the geometric element.

2. A polynomial space Pk, where the parameter k refers to the degree of the
polynomial, and a scalar hierarchical base B̂k = {ϕ̂} of Pk. Each basic
functions ϕ̂ is associated to one of the basic elements of K̂ : vertex, edge
or to K̂ itself.

3. Vector fields b̂ defined over the master element. These fields are classified
as being of edge or internal type. A field associated to a given edge is
incident to it, and is connected to one of its basic elements: vertex or the
edge itself. The internal fields may be connected to the interior of the
master element or to fields tangent to an edge.
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4. A transformation F : ϕ̂→ ϕ, an isomorphism mapping scalar functions of
H1(K̂) to scalar functions of H1(K), which is induced by the geometric
mapping.

5. Construction of hierarchical bases BKk = {ϕ} for subspaces of H1(K).
Each scalar shape function ϕ has the form ϕ = F[ϕ̂(ξ̃)], where ϕ̂ ∈ B̂k.
For each scalar shape function, there is an appropriate parametrization
ξ̃ of K̂, a key tool to ensure continuity at element interfaces, when the
scalar shape functions are combined to form a subspace in H1(Ω).

6. The geometric mapping also induces a contravariant Piola transformation
Fdiv : Φ̂ → Φ, an isomorphism mapping vector fields Φ̂ ∈ H(div, K̂) to
vector fields Φ ∈ H(div,K).

7. Construction of vector fields b defined over K by the Piola transformation
Fdivb̂ of the vector fields b̂ mentioned in Item 3. Accordingly, the fields
b are also classified as being of edge or interior type, in accordance with
the classification of the corresponding vector fields b̂.

8. Construction of a basis BK
k = {Φ} for a subspace in Hdiv(K). Each vec-

torial shape function Φ has the form

Φ = ϕv,

where ϕ is a scalar basic function in Bk and v is obtained by a normal-
ization procedure of a field b. Normalization is done in order to ensure
the unitary normal component of an edge field v over its associated edge.
Internal fields do not require such normalization. The properties of the
normal components of v over the edges of K, combined with the continu-
ity of scalar shape functions ϕ are fundamental for the global assembly of
H(div)-conforming functions locally generated by the bases BK

k , in each
element of the partition.

Detailed descriptions of these steps are presented in the next three sections.

3. Scalar bases and constant vector fields at the master element

This section contains the descriptions of Items 1, 2, and 3 listed in the
previous Script section.

3.1. Master element and polynomial spaces
Let K̂ ⊂ R2 be a quadrilateral or triangular master element. Its basic lower

dimension elements are the vertices âm and edges l̂m, as described in Figure
3.1. Denote by V̂ and Â the sets of vertices and edges of K̂, respectively. Let n̂
denote the unitary external normal to K̂. Two edges are said to be adjacent if
they share a vertex.
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Figure 3.1: Quadrilateral and triangular master elements, and their vertices and edges.

Quadrilateral master element. The quadrilateral master element is

K̂ = {(ξ0, ξ1) : −1 ≤ ξ0, ξ1 ≤ 1} ,

with vertices â0 = (−1,−1), â1 = (1,−1), â2 = (1, 1) and â3 = (−1, 1). The
edges l̂m,m = 0, 1, 2 and 3, are given by the segments connecting the vertices
âm a âm+1(mod 4). The spaces Pk = Qk(K̂) are the polynomials with degree
at most k for each variable, with dimension (k + 1)2. That is, a polynomial
p ∈ Qk(K̂) has the tensorial form

p(ξ0, ξ1) =
∑
i,j≤k

aijξ
i
0ξ
j
1.

Triangular master element. The triangular master element is

K̂ = {(ξ, η), 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1− ξ} ,

with vertices â0 = (0, 0), â1 = (1, 0), â2 = (0, 1). Its edges l̂m,m = 0, 1 and
2, are given by the segments connecting the vertices âm a âm+1(mod 3). The
spaces Pk are formed by polynomials of total degree k, with dimension equal to
1
2 (k + 1)(k + 2). A polynomial p ∈ Pk has the form

p(ξ0, ξ1) =
∑

i,j, i+j≤k

aijξ
i
0ξ
j
1.

3.2. Scalar hierarchical bases for the polynomial spaces on the master element
As shown in [5], hierarchical bases B̂k for the polynomial spaces Pk are

formed by shape functions classified as:
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• Vertex functions ϕ̂âm(ξ), such that ϕ̂âm(âs) = δms (and vanishing at
all edges that do not share âm).

• Edge functions ϕ̂l̂m,n(ξ), vanishing at all edges l̂s, with s 6= m, and in
all vertices.

• Internal functions ϕ̂K̂,n1,n2(ξ), vanishing at all edges and vertices.

The vertex functions are traditional first order Lagrangian bases. The other ones
(of edge and internal types) are defined by the multiplication of one-dimensional
Chebyshev polynomials with quadratic functions (blending functions), formed
by the combination of vertex functions. Chebychev polynomials are defined
recursively by

f0(t) = 1,

f1(t) = t,

fn(t) = 2tfn−1(t)− fn−2(t), n ≥ 2.

Quadrilateral Case
A hierarchical polynomial basis for Pk = Qk(K̂), of dimension (k + 1)2, is

formed by:

• 4 vertex functions ϕ̂âm :

ϕ̂â0(ξ0, ξ1) =
(1− ξ0)

2

(1− ξ1)

2
, ϕ̂â1(ξ0, ξ1) =

(1 + ξ0)

2

(1− ξ1)

2
,

ϕ̂â2(ξ0, ξ1) =
(1 + ξ0)

2

(1 + ξ1)

2
, ϕ̂â3(ξ0, ξ1) =

(1− ξ0)

2

(1 + ξ1)

2
,

such that ϕâm(âs) = δms and vanishing on the edge that does not share
the vertex âm.

• 4(k − 1) edge functions, ϕ̂l̂m,n, for k ≥ 2, n = 0, 1, · · · , k − 2:

ϕ̂l̂0,n(ξ0, ξ1) = ϕ̂â0(ξ0, ξ1)[ϕ̂â1(ξ0, ξ1) + ϕ̂â2(ξ0, ξ1)]fn(ξ0),

ϕ̂l̂1,n(ξ0, ξ1) = ϕ̂â1(ξ0, ξ1)[ϕ̂â2(ξ0, ξ1) + ϕ̂â3(ξ0, ξ1)]fn(ξ1),

ϕ̂l̂2,n(ξ0, ξ1) = ϕ̂â2(ξ0, ξ1)[ϕ̂â3(ξ0, ξ1) + ϕ̂â0(ξ0, ξ1)]fn(−ξ0),

ϕ̂l̂3,n(ξ0, ξ1) = ϕ̂â3(ξ0, ξ1)[ϕ̂â0(ξ0, ξ1) + ϕ̂â1(ξ0, ξ1)]fn(−ξ1).

The edge functions ϕ̂l̂m,n vanish on all sides l̂s, with s 6= m.

• (k − 1)2 internal functions ϕ̂K̂,n0,n1 , with 0 ≤ n0, n1 ≤ k − 2

ϕ̂K̂,n0,n1(ξ0, ξ1) = ϕ̂â0(ξ0, ξ1)ϕ̂â2(ξ0, ξ1)fn0
(ξ0)fn1

(ξ1).

These functions vanish at all sides and vertices.
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Triangular case
A hierarchical polynomial basis for Pk = Pk(K̂), of dimension (k2+3k+2)/2

is formed by:

• 3 vertex functions ϕ̂âm

ϕ̂â0(ξ0, ξ1) = 1− ξ0 − ξ1,
ϕ̂â1(ξ0, ξ1) = ξ0,

ϕ̂â2(ξ0, ξ1) = ξ1,

such that ϕ̂âm(âs) = δms, and vanishing on the edge that does not share
the vertex âm.

• if k ≥ 2, one has 3(k − 1) edge functions ϕ̂l̂m,n, n = 0, 1, · · · , k − 2

ϕ̂l̂0,n(ξ0, ξ1) = ϕ̂â0(ξ0, ξ1)ϕ̂â1(ξ0, ξ1)fn(ξ1 + 2ξ0 − 1),

ϕ̂l̂1,n(ξ0, ξ1) = ϕ̂â1(ξ0, ξ1)ϕ̂â2(ξ0, ξ1)fn(ξ1 − ξ0),

ϕ̂l̂2,n(ξ0, ξ1) = ϕ̂â2(ξ0, ξ1)ϕ̂â0(ξ0, ξ1)fn(1− ξ0 − 2ξ1),

The edge functions ϕ̂l̂m,n vanish on all sides l̂s, with s 6= m.

• 1

2
(k − 2)(k − 1) internal functions ϕ̂K̂,n0,n1 , k ≥ 3, 0 ≤ n0 + n1 ≤ k − 3

ϕ̂K̂,n0,n1(ξ0, ξ1) = ϕ̂â0(ξ0, ξ1)ϕ̂â1(ξ0, ξ1)ϕ̂â2(ξ0, ξ1)fn0(2ξ0−1)fn1(2ξ1−1),

that vanish at all sides and vertices.

3.3. Constant vector fields b̂ at the master element
To each basic element of K̂ there are associated two constant and linearly

independent vector fields:

• With every vertex âs ∈ V̂, there are associated fields b̂ = bl̂m,âs , where l̂m
is an edge that has âs as a vertex. Each bl̂m,âs is aligned to the adjacent
edge (which also shares âs as a vertex ) and has unitary component along
the unitary externa normal n̂ on the edge l̂m.

• With every edge l̂s ∈ Â, there are associated the fields b̂ = bl̂s,>, aligned
with the edge l̂s, and b̂ = bl̂s,⊥ is the unitary external normal n̂ at l̂s.

• With the volume K̂, there are associated fields b̂ = bK̂(j) = e(j), j = 1, 2.

These fields are grouped into two categories

1. Edge vector fields, incident with the edges l̂m ∈ Â:
a) b̂ = bl̂m,âs , associated with each vertex âs ∈ V̂m .
b) b̂ = bl̂m,⊥ associated with the edge l̂m,
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2. Internal vector fields:
a) bl̂m,> aligned with the edge l̂m.
b) b̂ = bK̂(j) = e(j), j = 1, 2, associated to the interior of K̂.

The constant vector fields b̂ associated with quadrilateral and triangular master
elements are illustrated in Figure 3.2 and detailed in Table 1.

Figure 3.2: Vector fields for the quadrilateral and triangular master elements.

Quadrilateral case Edge fields
Edge fields

bl̂0,â0 bl̂0,â1 bl̂0,⊥ bl̂0,â0 bl̂0,â1 bl̂0,⊥

(0,−1) (0,−1) (0,−1) (0,−1) (1,−1) (0,−1)

bl̂1,â1 bl̂1,â2 bl̂1,⊥ bl̂1,â1 bl̂1,â2 bl̂1,⊥

(1, 0) (1, 0) (1, 0) (1, 0) (0, 1) ( 1√
2
, 1√

2
)

bl̂2,â2 bl̂2,â3 bl̂2,⊥ bl̂2,â2 bl̂2,â0 bl̂2,⊥

(0, 1) (0, 1) (0, 1) (−1, 1) (−1, 0) (−1, 0)

bl̂3,â3 bl̂3,â0 bl̂3,⊥

(−1, 0) (−1, 0) (−1, 0)
Internal fields

bl̂0,> bl̂1,> bl̂2,> bl̂0,> bl̂1,> bl̂2,>

(1, 0) (0, 1) (−1, 0) (1, 0) (−1, 1) (0,−1)

bl̂3,> bK̂(1) bK̂(2) bK̂(1) bK̂(2)

(0,−1) (1,0) (0,1) (1,0) (0,1)

Table 1: Constant vector fields for quadrilateral and triangular master elements.
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3.4. Geometric mapping
Let x : R2 → Rd, d = 2, 3 be a regular geometric mapping (at least C1).

The implemented geometric mappings implemented in NeoPZ are described in
[8] using the transfinite interpolation methodology [7].

Let x = (xj), j = 1, · · · , d, and J = ∇x the Jacobian matrix of this map-
ping, that is

J = [∂0 ∂1] =

[
∂x0

∂ξ0
∂x0

∂ξ1
∂x1

∂ξ0
∂x1

∂ξ1

]
or J = [∂0 ∂1] =


∂x0

∂ξ0
∂x0

∂ξ1
∂x1

∂ξ0
∂x1

∂ξ1
∂x2

∂ξ0
∂x2

∂ξ1

 ,
where the columns are given by ∂i = ( ∂x∂ξi ). In the finite element method,
it is assumed that x is a diffeomorphism between the elements K̂ and K (i.
e., x : K̂ → K is a bijection with differentiable inverse x−1 ). For this pur-
pose, the columns ∂i of J must be linearly independent. The determinant (or
pseudo-determinant) det J of the Jacobian matrix is defined as the area of the
parallelogram generated by the two columns of J, i.e.,

det J = ||∂0 × ∂1||, (3.1)

where ||v|| = √< v,v > denotes Euclidean norm in Rd derived from the inner
product <,>.

Let α be the angle formed by ∂0 and ∂1. Since < ∂0,∂1 >= ||∂0||||∂1|| cosα
and ||∂0 × ∂1|| = ||∂0|| ||∂1|| sinα, it results that < ∂0,∂1 >

2 +||∂0 × ∂1||2 =
||∂0||2 ||∂1||2. Then, it follows that

det J = ||∂0 × ∂1|| =
√
||∂0||2 ||∂1||2− < ∂0,∂1 > =

√
det G,

where the matrix G = JtJ = (gi,j) has coordinates gi,j =< ∂i,∂j >.

Tangent plane
Let Tp(K) ⊂ Rd be the tangent plane to K at the point p = x(ξ). It is

generated by the columns of the Jacobian matrix. Precisely, if v ∈ Tp(K), then
v =

∑
vi∂i = Jv̂, where v̂ = (vi) ∈ R2. For planar elements K ⊂ R2, the

tangent plane is the Euclidean space R2.
It can be observed that for w = Jŵ =

∑
wi∂i, v = Jv̂ =

∑
i vi∂i ∈ Tp(K),

< v,w >= [Jv̂]t[Jŵ] = [v̂tJt][Jŵ] = v̂tJtJŵ = v̂tGŵ.

4. H1-conforming spaces based on curved meshes

In the present section, the main aspects for the construction H1-conforming
spaces based on curved meshes over manifolds immersed in R3 are described.
The procedure is similar to the ones used for regions in linear Euclidian ge-
ometries, but some specific tools from calculus on manifolds are required. The
content refers to Items 4 and 5 of the Script section.
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4.1. Transformation of scalar functions ϕ = Fϕ̂
The scalar functions defined in the master element K̂ may be mapped to

functions defined in K by the operator ϕ = Fϕ̂ defined by the composition

ϕ = ϕ̂ ◦ x−1.

In the case of mappings between spaces of same dimension (i.e, d = 2), the
classic formulae for the change of variables in integrals are

ˆ
K

Fϕ̂dS =

ˆ
K̂

ϕ̂ det Jdξ,

ˆ
∂K

Fϕ̂ds =

ˆ
∂K̂

ϕ̂Jn̂dŝ,

where Jn̂ = det J ||(J−1)tn̂||. For mappings to an immersed manifold in
higher dimensional space (i.e., d = 3), these formulae are valid with Jn̂ =

det J ||(J†)tn̂||, where J† = (JtJ)−1J
t is the pseudo-inverse of the Jacobian

matrix J. It is observed that in the case of Euclidean elements of the same
dimension, J is a square matrix and J† = J−1J−tJt = J−1, recovering the
standard formulae for d = 2.

Gradient operator
For a mapping between Euclidean spaces of the same dimension (e.g. see

[2]), the gradient is given by

∇ϕ = (J−1)t∇̂ϕ̂. (4.1)

In the case of mapping onto a manifold K immersed in R3, the gradient ∇Kϕ
of a scalar function ϕ : K → R is an operator defined on Tp(K), for each point
p ∈ K, so that for v ∈ TpK

< ∇Kϕ,v >= dϕ(v).

For transformed scalar functions ϕ = Fϕ̂ = ϕ̂ ◦ x−1, and v =
∑
i vi∂i, then

dϕ(v) =
∑

vidϕ(∂i) =
∑

vi
∂ϕ̂

∂ξi
.

Combining these two expressions with the representation ∇Kϕ =
∑
i αi∂i, then

dϕ(v) =< ∇Kϕ,v >=
∑
i,j

gi,j .vi.αj =
∑

vi
∂ϕ̂

∂ξi
,

from which it follows that ∑
j

gi,j .αj =
∂ϕ̂

∂ξi
, ∀i.
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That is, if α = (αi), then Gα = ∇ϕ̂, which means that α = G−1∇ϕ̂. That is,
if G−1 = (gi,j), then

∇Kϕ(x(ξ)) =
∑
i,j

gi,j(ξ)
∂ϕ̂(ξ)

∂ξj

∂x(ξ)

∂ξi
. (4.2)

Another way to express this formula is given by

∇Kϕ = (J†)t∇ϕ̂. (4.3)

It can be observed that in the case of elements in Euclidean spaces of the same
dimension, in which J† = J−1, the formula (4.1) is recovered.

4.2. H1-conforming subspaces
For regions Ω ⊂ Rd, consider the Sobolev space

H1(Ω) =
{
u ∈ L2(Ω);∇u ∈ [L2(Ω)]d

}
,

with the norm

||u||H1 =
[
||u||2L2 + ||∇u||2L2

]1/2
,

and denote by H1/2(∂Ω) the trace space u|∂Ω of functions u ∈ H1(Ω).
Let u ∈ H1(Ω), Γ a partition of Ω, and K`,Kj ∈ Γ be two neighboring

elements sharing a common edge l`,j = K` ∩ Kj . Let uK
`

= u|K` ∈ H1(K`)
and uK

j

= u|Kj ∈ H1(Kj). Suppose a fixed direction η is determined by the
external normal of K` at l`,j . Define the trace jump of u at the interface l`,j
(in the sense of H1/2) as

JuK |l`,j = uK
j

|l`,j − uK
`

|l`,j . (4.4)

Theorem 4.1. (Characterization of H1(Ω) A function u ∈ L2(Ω) is in H1(Ω)
if and only if, to each element K in a partition of Ω, the following properties
are valid: a) uK = u|K ∈ H1(K); b) the trace jump of u at interfaces of the
elements is zero.

Scalar shape functions in H1(K)

Using the transformation F, the hierarchical polynomial basis B̂k of Pk is
mapped onto a basis BKk for finite a element subspace in H1(K). Thus, the
basic functions in BKk are classified as:

• Vertex functions: ϕam(p) = F[ϕ̂âm(ξ̃)], such that ϕam(as) = δms and
vanish at all edges of K that does not share am.

• Edge functions: ϕlm(p) = F[ϕ̂l̂m,n(ξ̃)], and vanish at all edges ls, with
s 6= m (and all vertices).

• Internal functions ϕK,n1,n2(p) = F[ϕ̂K̂,n1,n2(ξ̃)], that vanish at all edges
and vertices of K.
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In this definition, the notation ξ̃ corresponds to an appropriate parameterization
of K̂ which ensures continuity of the bases at the interface between the partition
elements.

This set of vertex, edge and internal functions is linearly independent, form-
ing a basis for a subspace of H1(K)

BKk =
{
ϕam , ϕlm , ϕK,n1,n2

}
. (4.5)

Global continuity for subspaces of H1(Ω)
We consider the subspace V Γ

k of scalar functions u defined by parts, such
that uK = u|K ∈ span BKk ⊂ H1(K). Let K`,Kj ∈ Γ two neighboring elements
sharing a common edge l`,j = K` ∩ Kj , uK

`

= u|K` ∈ span BK`

k and uK
j

=

u|Kj ∈ span BKj

k . In order to a function u ∈ V Γ
k be in H1(Ω), the zero jump

property uK
j |l`,j − uK

` |l`,j = 0 at the interface l`,j must be verified. For this,
the coefficients of the vertex and edge functions in the expansion of uK

`

in
terms of the basis BK`

k must be linked to those of the expansion of uK
j

in the
neighboring element Kj . The coefficients of the internal basic functions need
not to be linked, since the internal functions vanish at all edges and do not affect
the continuity of u at interfaces. The same fact applies to vertex functions ϕam
for vertices outside l`,j , and for edge functions ϕlm with lm 6= l`,j , since they also
vanish in l`,j , not contributing to the jump trace of u at this interface. But the
vertex functions associated with the vertices of the edge l`,j and edge functions
associated with l`,j itself do contribute to the jump trace at this interface.
However, as described in [5], the appropriate choice of parametrization ξ̃ for
the master element allows the jump of these basic functions to be zero at the
interface. Thus, to ensure zero jump trace of u, it is sufficient to assure that
the coefficient of the vertex functions associated with the vertices of l`,j and the
edge shape functions associated to the edge l`,j are coincident in both elements
sharing the interface. This result is summarized in the following theorem.

Theorem 4.2. Let Γ be a partition of the domain Ω in elements K mapped
from triangular or quadrilateral master elements. Consider hierarchical bases
BKk for subspaces in H1(K) as stated in (4.5). Let V Γ

k be the subspace of scalar
functions u such that uK = u|K ∈ span BKk ⊂ H1(K). Suppose that in the
expansions of uK

`

and uK
j

, with respect to the bases BK`

k and BKj

k of two
neighboring elements K`,Kj ∈ Γ sharing a common edge l`,j = K` ∩ Kj the
corresponding coefficients multiplying vertex and edge shape functions associated
to the common interface are identical. Then the space V Γ

k is a H1-conforming
finite element space.

5. H(div)-conforming spaces based on curved elements

The present section concerns with the constructionH(div)-conforming spaces
based curved meshes of manifolds immersed in R3, the main topic of this pa-
per. The content refers to Items 6, 7 and 8 of the Script section. Some specific
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tools and properties of the divergence operator, and Piola transformation on
manifolds are required. Through this text, the notation n refers to an unitary
external normal to a region, and, If necessary, nK is used to identify the specific
region K.

5.1. Properties related to the divergence operator
The divergent operator ∇.Φ converts a vector field Φ : p ∈ Ω → Φ(p) ∈

Tp(Ω) into a scalar function. Conceptually, it is defined as

∇.Φ(p) = lim
K→{p}

1

|K|

ˆ
∂K

< Φ,n > ds.

For vector fields defined on a manifold Φ : Ω → TpΩ, with representation
Φ =

∑
i Φi∂i, the divergence representation in local coordinates is given by

∇.Φ = F[
1

det J

∑
i

∂

∂ξi
((Φi ◦ x) det J)]. (5.1)

The space H(div,Ω) is defined by

H(div,Ω) =
{
Φ : Ω→ TpΩ ∈ [L2(Ω)]d; ∇.Φ ∈ L2(Ω)

}
,

with the norm

||Φ||Hdiv =
[
||Φ||2L2 + ||∇.Φ||2L2

]1/2
.

For functions Φ ∈ H(div,Ω), consider the normal component < Φ,n >∈
H−1/2(∂Ω), where H−1/2(∂Ω) is the dual space of H1/2(∂Ω) and n is the unit
outward normal over ∂Ω.

Theorem 5.1. (Green’s formula [10]) For scalar functions ϕ : Ω → R in
H1(Ω) and vectorial functions Φ : Ω → TpΩ in H(div,Ω) the integration by
parts formula is valid

ˆ
Ω

< ∇ϕ,Φ > dS = −
ˆ

Ω

ϕ div ΦdS +

ˆ
∂Ω

ϕ < Φ,n > ds. (5.2)

Let Φ : Ω → TpΩ be a vectorial function, and consider K`,Kj ∈ Γ two
neighboring elements sharing a common edge l`,j = K` ∩ Kj , with exterior
unit normal nK

`

and nK
j

, respectively. Being ΦK`

= Φ|K` ∈ Hdiv(K`) and
ΦKj

= Φ|Kj ∈ H(div,Kj), define the jump of the normal component at the
interface l`,j (in the sense of H−1/2(∂K)) by

JΦK =< ΦKj

,nK
j

> |l`,j+ < ΦK`

,nK
`

> |l`,j . (5.3)

Theorem 5.2. (Characterization of H(div,Ω)) A vector field Φ : Ω → TpΩ ∈
[L2(Ω)]n is in H(div,Ω) if and only if given any partition Γ: a) for all element
K ∈ Γ, ΦK = Φ|K ∈ H(div,K); b) the jump of the normal component at
element interfaces is zero.

13



In the case of regions Ω ⊂ R2, the result is known in the literature [2]. The
proof for the case of manifolds immersed in R3 is similar, and it is based on the
Green’s formula (5.2).

5.2. Piola transformation of vector fields Φ = FdivΦ̂
Let x : K̂ → K be a regular geometric mapping. In building a subspace

of H(div,K) by the transformation of vector fields in H(div, K̂), the operator F
does not apply, since it can not preserve normal components, not even mapping
H(div, K̂) on H(div,K). For this, the contravariant Piola transformation Fdiv :

Φ̂ → Φ, associated with the geometric mapping x, is used to relate vectorial
functions Φ̂ defined in the master element K̂ with vectorial functions Φ defined
in geometrical elements K by the formula

Φ = F[
1

det J
JΦ̂]. (5.4)

As reported in [2], for a mapping between Euclidean spaces of the same
dimension, divergence of vectorial fields given by the Piola contravariant trans-
formation verify the expression

∇.Φ = F
[

1

det J
∇̂.Φ̂

]
. (5.5)

Furthermore, if ϕ = Fϕ̂, the following identities are valid

ˆ
K

< Φ,∇ϕ > dp =

ˆ
K̂

< Φ̂, ∇̂ϕ̂ > dξ, (5.6)
ˆ
K

ϕ ∇.Φ dp =

ˆ
K̂

ϕ̂ ∇̂.Φ̂dξ, (5.7)
ˆ
∂K

< Φ,n > ϕ dσ =

ˆ
∂K̂

< Φ̂, n̂ > ϕ̂ dŝ. (5.8)

As a result, Fdiv is an isomorphism between H(div, K̂) and H(div,K), preserv-
ing normal components, in the H−1/2 sense. These results can be extended to
manifolds, as stated in the next theorem. See also [1].

Theorem 5.3. Let vector fields Φ in K and Φ̂ in K̂ be related by Piola transfor-
mation (5.4), and consider ϕ = Fϕ̂. Then the formula (5.5) and identities (5.6)-
(5.8) are valid. Consequently, Fdiv defines an isomorphism between H(div, K̂)
and H(div,K), preserving the normal traces of the fields on the boundary of the
elements in the sense of H−1/2 .

5.3. Vector Fields on the geometric element K
As stated in the Section 2, the construction of fields v on a curved element

K begins with the definition of vector fields b obtained from the Piola mapping
Fdivb̂ of constant vector fields b̂, defined in the master element, as stated in

14



Section 3.3. The next step is a normalization procedure, which is applied in
order to ensure unitary normal component of edge fields on their associated
edges. Interior fields do not require such normalization because their normal
components vanish at all element edges.

Piola transformation of fields b̂

From the constant vector fields b̂ defined over the master element, and using
the Piola transformation Fdiv, fields b are defined in K . That is,

b = Fdivb̂ =
1

det J
Jb̂.

Following the classification of the original fields b̂, they are also classified as
edge and internal fields. The vertices and edges of K are defined by geometric
mapping of the respective sub-elements in the master element K̂ : am = x(âm)

and lm = x(l̂m).

Normalization of the edge fields
For each edge l̂ of K̂ and each edge vector field b̂, a constant vector field t̂

tangent to l̂ ∈ Â is considered, such that the pair
{
n̂, t̂
}
is positively oriented,

and ||t̂× b̂|| = 1. Therefore,

det J =
||J t̂× J b̂||
||̂t× b̂||

= ||J t̂|| ||J b̂|| sin θ,

where θ is the angle between J t̂ and J b̂, with 0 ≤ θ ≤ π. To edge fields
b = Fdivb̂, consider the normalized fields

v = b||Jt̂||

and the fields

n =
(∂x(ξ)
∂ξ0
× ∂x(ξ)

∂ξ1
)× Jt̂

||(∂x(ξ)
∂ξ0
× ∂x(ξ)

∂ξ1
)× Jt̂||

.

As Jt̂ is contained in the tangent plane to K at the point p =x(ξ), the same
is true for n, which is unitary and orthogonal to Jt̂. Regardless the magnitude
of t̂, it is shown that n = nK is the unitary external normal to K at the edge
l = x(l̂).

Proposition. Let lm ∈ A be an edge of K.
a) The edge vector fields v = vlm,as and v = vlm,⊥ have unitary normal com-
ponent along lm;
b) the field v = vlm,> has zero normal component along lm;
c) if l is the adjacent edge to lm at a vertex as, then the normal component of
the field v = vl,as vanishes along lm.
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Proof. The edge fields are defined by v = ||Jt̂||
det J (J b̂), by applying the Piola

transform in the fields b̂ = bl̂m,âs and b̂ = bl̂m,⊥ and normalizing by ||Jt̂||.
Therefore, it follows that

v.n =
||Jt̂||
det J

(J b̂) · nm

=
||Jt̂||

||J t̂|| ||J b̂|| sin θ
||J b̂|| ||nm|| cos(α),

where α is the angle between J b̂ and n. Taking into account the orthogonality
property Jt̂ ⊥ n, then α = π

2 − θ or α = θ − π
2 , which leads to v.n = 1.

For the field v = vlm,> = Fdivbl̂m,>, obtained by the Piola transformation
of the field b̂ = bl̂m,>, the component along the external normal nm to the edge
lm is zero because bl̂m,> is tangent to l̂m (and therefore orthogonal to n̂m) and
because the Piola transformation maintain the normal components of the fields.

If l = x(l̂) and lm = x(l̂m) are adjacent edges in K, then l̂ and l̂m are
also adjacent at the master element, sharing the vertex âs (such that as =
x(âs)). The edge field v = vl,as is obtained by the normalization of the Piola
transformation of the field b̂ = bl̂,âs . By definition, bl̂,âs is aligned with the
adjacent edge l̂m, and hence having zero normal component over l̂m. Because
the Piola transform preserves the normal components of the fields, it follows
that the normal component of vl,as is also zero over lm.

In summary, the fields v are classified as:

1. Edge fields, incident to the edges lm ∈ A:
a) for each vertex as ∈ Vm, it is associated a vector field v = vlm,as , with
unitary normal component over lm. If l is an adjacent edge to lm, sharing
the vertex as, then the unit normal component of vl,as over nm is zero.
b) to every edge lm , it is associated a vector field v = vlm,⊥, with unitary
normal component over it.

2. Internal fields
a) for each edge lm ∈ A, it is associated a vector field v = vlm,>, tangent
to it (i.e., with zero normal component over lm).
b) For the volume K, two linearly independent fields v = vK(j), j = 1, 2
are associated.

5.4. Hierarchical vectorial bases for subspaces in Hdiv(K) and their properties
Let ϕ = F[ϕ̂(ξ̃)] be scalar shape functions in H1(K), defined in (4.2). The

interest is in the construction of vectorial shape functions Φ in the geometric
element K by multiplication

Φ(p) = ϕv,

where v is one of the fields obtained in the Section 5.3, by Piola transformation
applied to constant vector fields b̂ defined in the master element. The resulting
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hierarchical vectorial shape functions are organized according to the following
classification:

• Edge functions:
Φlm,as(p) - multiplication of scalar functions ϕas(p) associated to vertices
as ∈ Vm with the corresponding edge vector fields vlm,as .
Φls,n(p) - multiplication of scalar functions ϕls,n(p) associated to edges
ls ∈ A with the corresponding edge fields vls,⊥.

• Internal functions:
ΦK,lm,n(p) - multiplication of scalar functions ϕlm,n(p) with vector fields
vlm,> aligned with such edges.
ΦK,n1,n2

(j) (p) - multiplication of scalar functions ϕK,n1,n2(p) with vector
fields vK(j), j = 1, 2, associated with the interior of K.

Let BK
k be the set formed by these edge and internal functions

BK
k =

{
Φlm,as , Φlm,n

}
︸ ︷︷ ︸ ⋃ {

ΦK,lm,n,ΦK,n1,n2

(1) , ΦK,n1,n2

(2)

}
︸ ︷︷ ︸

edge functions internal functions

(5.9)

It is clear that span BK
k ⊂ Hdiv(K). It can also be observed that each

scalar function of the basis BKk appears twice in the composition of the vectorial
shape functions in BK

k :

• Vertex scalar functions: the function ϕas appears in the composition
of edge vectorial functions Φlm,as multiplied by the fields vlm,as of the two
adjacent edges lm sharing as.

• Edge scalar functions: the function ϕls,n(ξ) appears in the composition
of edge the vector function Φls,n, multiplied by the field vlm,⊥, and of the
internal vectorial function ΦK,ls,n, multiplied by the field vls,>.

• Internal scalar functions: the function ϕK,n1,n2(ξ) appears in the com-
position of the internal vectorial functions ΦK,n1,n2

(1) , ΦK,n1,n2

(2) multiplied
by the fields vK(j) j = 1, 2, respectively.

It is worth noting the following properties of the vectorial shape functions in
BK
k

• The edge shape functions Φlm,as = ϕasvlm,as vanish at an edge lq if as is
not a vertex of lq, since the scalar vertex function ϕas verify this property.
If as is a vertex of lq and lm 6= lq (lq is adjacent to lm), then the normal
component < Φlm,as ,n > |lq = 0, given that the normal component of
vlm,as is zero along the adjacent side of lm by the vertex as. Over lm, the
normal component < Φlm,as ,nK > |lm = ϕas |lm , keeping in mind that
the normal component of vlm,as is unitary over lm .
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• The edge shape functions Φlm,n = ϕlm,nvlm,⊥ vanish at lq if lq 6= lm,
considering that the edge of scalar function ϕlm,n has this property. About
lm, the normal component < Φlq,n,nK > |lq = ϕlq,n|lq , keeping in mind
that the normal component of vlq,⊥ is unitary along lq.

• The internal shape functions ΦK,lm,n = ϕlm,nv> vanish on all edges lq,
with lq 6= lm, since the edge scalar function ϕlm,n has this property. On
lm, the normal component < ΦK,l,n,nK > |lm is zero, given that the
normal component of vlm,> is zero along lm.

• The internal functions ΦK,n1,n2

(j) = ϕK,n1,n2vK(j) vanish on all edges of K,
since the internal scalar functions ϕK,n1,n2 verify this property.

Theorem 5.4. The set of vectorial functions BK
k is linearly independent.

Proof. Consider the linear combination

g =
∑
lm∈A

[
∑
as∈lm

αm,sΦ
lm,as +

∑
n

βm,nΦlm,n +
∑
n

γm,nΦK,lm,n] +

∑
n1,n2

λ(1)
n1,n2

ΦK,n1,n2

(1) +
∑
n1,n2

λ(2)
n1,n2

ΦK,n1,n2

(2) = 0.

The expression of g can be grouped by the contributions of each of the scalar
shape functions

g =
∑
as∈V

[
∑

m; as∈Vm

αm,sv
lm,as ]ϕas +

∑
n

[
∑
lm∈A

βm,nvlm,⊥ + γm,nvlm,>]ϕlm,n

+
∑
n1,n2

[λ(1)
n1,n2

vK(1) + λ(2)
n1,n2

vK(2)]ϕ
K,n1,n2 = 0.

Since the scalar shape function are linearly independent, it follows that the vec-
torial coefficients multiplying each of these functions in the linear combination
g vanish. That is,

∑
m; as∈Vm

αm,sv
lm,as = 0, (5.10)

βm,nvlm,⊥ + γm,nvlm,> = 0, (5.11)

λ(1)
n1,n2

vK(1) + λ(2)
n1,n2

vK(2) = 0. (5.12)

Considering the property of linear independence of two fields associated with
each vertex of (5.10), we have that αm,s = 0. Similarly, the linear independence
property of the two fields associated with each edge, it follows from (5.11) that
βm,n = γm,n = 0. Finally, in view of the property of the linear independence of
two fields associated with the volume, thus λ(1)

n1,n2 = λ
(2)
n1,n2 = 0. Consequently,

the set BK
k turns out to be linearly independent.
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5.5. Hdiv-conforming subspaces
Let uK ∈ span BK

k ⊂ Hdiv(K) and consider the expansion

uK =
∑
lm∈A

[
∑
as∈lm

αm,sΦ
lm,as +

∑
n

βm,nΦlm,n +
∑
n

γm,,nΦK,lm,n]

+
∑
n1,n2

λ(1)
n1,n2

ΦK,n1,n2

(1) +
∑
n1,n2

λ(2)
n1,n2

ΦK,n1,n2

(2) .

Let K`,Kj ∈ Γ be two neighboring elements sharing a common edge l`,j =
K` ∩ Kj . Recalling the properties of the normal components of each of the
vectorial shape functions, the only terms contributing to this calculation of
< uK ,nK > |l`,j are drawn from the edge bases. Precisely, it follows that

< uK ,nK > |l`,j =
∑

as∈Vl`,j

αq,sϕ
as |l`,j +

∑
n

βq,nϕ
l`,j ,n|l`,j . (5.13)

Thus, in view of the continuity of scalar bases at the interface l`,j , the necessary
and sufficient condition for the jump of the normal component to be zero is
that the coefficients of the edge functions Φl`,j ,as associated with the vertex of
l`,j and edge functions Φl`,j ,n associated with same edge l`,j are opposite in
both elements K` and Kj sharing this interface. This result is summarized in
following theorem.

Theorem 5.5. Let Γ be a partition of the domain Ω formed by elements K,
which are mapped from triangular or quadrilateral master elements, and con-
sider hierarchical vectorial bases BK

k , defined in (5.9). Consider a space VΓ
k of

vectorial functions u such that uK = u|K ∈ span BK
k ⊂ Hdiv(K). Suppose that

in the expansions of uK
`

and uK
j

with respect to the bases BK`

k and BK`

k of
two neighboring elements K`,Kj ∈ Γ, sharing a common edge l`,j = K` ∩Kj,
the corresponding coefficients multiplying edge shape functions associated to l`,j
in both elements K` and Kj are opposite. Then V Γ

k is a subspace of Hdiv(Ω).

6. Numerical applications

Consider the model Poisson problem expressed as:

∇.σ = f in Ω, (6.1)
σ = −∇u, (6.2)
u = uD in ∂Ω, (6.3)

where Ω ⊂ Rd is the computational domain.
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Mixed formulation
As studied in [2], the mixed formulation for problem (6.1)-(6.3) is: find

(σ, u) ∈
(
H(div,Ω)× L2(Ω)

)
such that, for all q ∈ H(div,Ω) and ϕ ∈ L2(Ω),

ˆ
Ω

σ.q dΩ−
ˆ

Ω

u∇.q dΩ = −
ˆ
∂Ω

uDq.nds, (6.4)
ˆ

Ω

∇.σϕ dΩ =

ˆ
Ω

f ϕ dΩ. (6.5)

In typical Hdiv-conforming discretized versions of the mixed formulation,
approximate solutions for dual σ and primal u variables are searched in finite
dimensional subspaces Vh ⊂ H(div,Ω) and Uh ⊂ L2(Ω), which are based on a
partition Γh of the computational domain Ω.

In order to simplify the computation of the integral terms involving the
divergence operator, the implementation of the present paper proceeds as in
discontinuous Galerkin formulations by splitting the integrals over the elements
of the partition. By using integration by parts on the integral terms involving
the divergence operator restricted to K, we get the expression

ˆ
K

u∇. q dK = −
ˆ
K

∇u · q dK +

ˆ
∂K

uq.nK ds,

ˆ
K

∇.σϕ dK = −
ˆ
K

∇ϕ · σ dK +

ˆ
∂K

ϕσ.nK ds.

After that, these terms are inserted into the equations (6.1-6.3), and added over
all elements of the partition, to obtain the following new formulation, without
requiring divergence computations,


∑
K∈Γ

(ˆ
K

(σ.q +∇u · q) dK

)
+

ˆ
Λint

JuK q.η ds+

ˆ
∂Ω

(uD − u)q.n ds = 0,∑
K∈Γ

(ˆ
K

∇ϕ · σ dK +

ˆ
K

fϕ dx

)
−
ˆ

Λint

JϕK σ · η ds−
ˆ
∂Ω

ϕσ.n ds = 0,

(6.6)
where and Λint represents the set formed by the edges of the elements in Γ

placed in the interior of Ω, and JuK |l`,j = uK
j |l`,j − uK

` |l`,j denotes the trace
jump of u at an interface l`,j of two elements Kj and K`, η being a stablished
direction determinded by nK

`

, as the definition in equation (4.4).

Approximation spaces
The purpose is to apply to the mixed formulation (6.6) finite element approx-

imation spaces Uh and Vh based on curved triangular or quadrilateral meshes
Γh with characteristic side length h. For the primal variable, the functions in
Uh = UΓh

k ⊂ L2(Ω) are piecewisely defined as u|K = FK û, û ∈ Pk, for K ∈ Γh,
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without any continuity constraint. For the dual variable, the adopted approxi-
mation spaces Vh ⊂ VΓh

k+1 are spanned by the face vectorial functions of VΓh

k ,
and by those internal functions Φ = ϕv in VΓh

k+1 whose corresponding internal
shape functions in the master element Φ̂ = ϕ̂b̂ have divergence Pk. This kind
of approximation spaces (Vh Uh) is referred as being of ~P∗k Pk type.

Static condensation
In all the cases, static condensation is applied to represent the discretized
version of system (6.6). Consider the organization of the degrees of freedom of
the flux in terms of internal edge components σe, and σi formed by internal
and boundary fluxes. The pressure is represented by a scalar value u0 and the
values ui of the pressure approximation except u0. Thus, the matrix
representation can be expressed in the form

Aii BTii BTie Aie
Bii 0 0 Bie
Bie 0 0 Bee
Aei BTie BTee Aee



σi
ui
u0

σe

 =


−fuD

−fi
−f0

0

 ,

where, fuD
is the contribution to the right hand side of non-homogeneus

Diriclet boundary condition, fi is the right hand side volume contribution
associaded to condensed scalar shape functions, f0 being associated to the
remaining ones. Then, static condensation may be applied by eliminating the
internal degrees of freedom σi and ui, to get a condensed system envolving
only equations for σe and u0.

6.1. Problem 1: curved elements on a circular region
Consider the model problem defined on the circular region Ω ⊂ R2 with

radius r = 1. The exact solution is the harmonic function

u(r, θ) = r4 cos(2θ) sin(2θ),

σ(r, θ) = −
[

4r3 cos(2θ) sin(2θ)
2r3

(
cos2(2θ)− sin2(2θ)

) ] ,
corresponding to the forcing term f = 0.

Starting with a partition of Ω formed by four curved triangular elements,
covering the central disc with radius r = 1/2, and four curved rectangular el-
ements, covering the anular region corresponding to 1/2 < r ≤ 1, the meshes
are obtained by subsequent uniform subdivision of each element into four new
subelements. Figure 6.1 (left side) illustrates the resulting curverd meshes re-
stricted to one quadrant of Ω.
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6.2. Problem 2: curved elements on a cylinder
Consider a half cylindrical manifold Ω ⊂ R3 with radius 1, corresponding to

angle 0 ≤ θ ≤ π, and −π2 ≤ z ≤
π
2 . The exact solution is defined by

u(θ, z) = sin(θ) cos(z),

σ(θ, z) =

 0
− cos θ cos z

sin θ sin z

 ,
corresponding to the forcing term f = 2 cos z sin θ.

Starting with a partition of Ω into two cylindrical parts obtained by the
subdivision of the angle variable at π

2 , the meshes are subsequently defined by
uniform subdivision, as illustrated in Figure 6.1 (central side).

6.3. Problem 3: curved elements on the unit sphere
Consider the model problem on the unit sphere Ω ⊂ R3, having exact solu-

tion given in spherical coordinates by

u(θ, φ) = sin6(θ)(1− cos2 φ),

σ(θ, φ) = −


0

6 cos θ sin5 θ sin2 φ
r

sin5 θ sin 2φ
r

 ,
corresponding to the forcing term

f = −
sin4 θ

(
−6 sin2 θ + cos2 φ(2 + 6 sin2 θ) + (−2 + 36 cos2 θ) sin2 φ

)
r2

.

The curved meshes are obtained by a projection of uniform meshes on the
faces of a cube, as illustrated in Figure 6.1 (right side). For this test case,
∂Ω corresponds to a line (slit) on the equator of the sphere. On this line a
Dirichlet condition is applied corresponding to the exact solution.

The results of the three problems are summarized in Figure 6.2, demonstrat-
ing optimal convergence rates in the L2-norm of order k + 1, both for primal
and dual variables.

Figure 6.3 illustrates the effectiveness of the static condensation procedure
in the reduction of degrees of freedom at the finest level of refinement. More
degrees of freedom can be condensed when increasing the polynomial order.
Quadrilateral elements have a larger number of condensable degrees of freedom.
For instance, for k = 5, about 88% of the total number of degrees of freedom
are condensed in the cylindrical and spherical manifolds, using quadrilateral
elements, and about 87% for the circular region, using both quadrilateral and
triangular elements.
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Figure 6.1: Mesh geometries of one quadrant of the circular region Ω in Problem 1 (left), the
cylindrical region in Problem 2 (center) and the unit sphere in Problem 3 (right), at refinement
levels L = 0, 1, 2. Red curves reffer to the coarser mesh, and blue lines correspond to refined
mesh levels.

23



10
−2

10
−1

10
0

10
1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

F
lu

x
 e

rr
o

r

Circular region

 

 

1

2

1

3

1

4

1

5

1

6

k=1
k=2
k=3
k=4
k=5

10
−2

10
−1

10
0

10
1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

P
re

s
s
u

re
 e

rr
o

r

Circular region

 

 

1

2

1

3

1

4

1

5

1

6

k=1
k=2
k=3
k=4
k=5

10
−2

10
−1

10
0

10
1

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

F
lu

x
 e

rr
o

r

Cylindrical manifold

 

 

1

2

1

3

1

4

1

5

1

6

k=1
k=2
k=3
k=4
k=5

10
−2

10
−1

10
0

10
1

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

P
re

s
s
u

re
 e

rr
o

r

Cylindrical manifold

 

 

1

2

1

3

1

4

1

5

1

6

k=1
k=2
k=3
k=4
k=5

10
−2

10
−1

10
0

10
1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

F
lu

x
 e

rr
o

r

Spherical manifold

 

 

1

2

1

3

1

4
1

5
1

6

k=1
k=2
k=3
k=4
k=5

10
−2

10
−1

10
0

10
1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

P
re

s
s
u

re
 e

rr
o

r

Spherical manifold

 

 

1

2

1

3

1

4
1

5
1

6

k=1
k=2
k=3
k=4
k=5

Figure 6.2: Convergence histories for the flux (left side) and the pressure (right side) for
Problem 1 (top), Problem 2 (center) and Problem 3 (bottom), using the mixed method with
approximation space configurations of type ~P∗

k Pk, for k = 1, 2, 3, 4 and 5.
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Figure 6.3: Percentage of condensed degrees of freedom in the mixed method for Problem 1
(black line), Problem 2 (red line) and Problem 3 (blue line), at the finest refinement level.

7. Conclusions

A new approach is presented for developing H(div)-conforming approxima-
tion spaces for curved elements in two dimensional manifolds immersed in R3.
These approximations are by nature locally conservative.

The properties of the Piola transformation are used to define vector fields
over the geometric elements which are tangent to the manifold, which are then
combined with higher order H1-conforming scalar shape functions to create high
order H(div) approximation spaces on manifolds.

Static condensation has been applied to reduced the size of the global system
of equations. It is shown that for approximations of order k = 5 more than 85%
of the total number of equations can be locally condensed, making the mixed
finite element approximations computationally more efficient.

In order to avoid loss of local conservation due to numerical integration
errors, the mixed formulation is modified by applying an additional integration
by parts locally on each element. This modified formulation avoids the need of
computing the divergence of the flux shape functions.

The proposed approximation has been applied to a two dimensional problem
over a circle and to two dimensional problems embedded in R3 representing a
cylindrical region and a sphere. For all simulated problems optimal convergence
rates are observed.
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